

Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019
 Management and Entrepreneurship

Time: 3 hrs.
Max. Marks: 100

Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Design of RCC Structural Elements

Time: 3 hrs .
Max. Marks: 100

Note: I. Answer any FIVE full questions, selecting
 atleast TWO questions from each part.
 2. Use of IS456-2000 is permitted.
 3. Use of SP-16 is permitted.

PART - A
1 a. Explain the necessity of reinforcement in concrete.
(04 Marks)
b. Why do we need cover to reinforcement? ($\mathbf{0 4}$ Marks)
c. What is meant by limit state? Discuss the different limit states to be considered in reinforced concrete design.
(08 Marks)
d. Why is the partial safety factor for concnete greater than that for reinforcing steel in the consideration $\Subset f$ limit states?
(04 Marks)
2 a. Obtain an expression for the limitimg depth of neutral axis ($\mathrm{x}_{\mathrm{u}, \mathrm{lim}}$) for a rectangular section with 20 grade concrete and Fe500 grade of steel with the help of strain diagram.
(06 Marks)
b. Generate expression to calculate the limiting moment of resistance for a reinforced concrete flanged section, when $\mathrm{X}_{\mathrm{u}, \text { lim }}>\mathrm{D}_{\mathrm{f}}$ and $\mathrm{D}_{\mathrm{f}}<3 / 7 \mathrm{x}_{\mathrm{u}, \text { lim }}$.
D_{f} - Thickness of the flange
$\mathrm{x}_{\mathrm{u}, \lim }$ - Limiting value of neutral axis depth.
(08 Marks)
c. Estimate the momemt of resistance of a T-section with the following details :
i) Effective flange width $=2300 \mathrm{~mm}$
ii) Thickness of flange $=150 \mathrm{~mm}$
iii) Web width $=300 \mathrm{~mm}$
iv) Effeative depth $=700 \mathrm{~mm}$
v) Reinforcement : $8-\# 25$
vi) Materials: M20 conorcte and Fe415 steel.
(06 Marks)
3 a. What are the major faators which influence crack-widths in flexural members? (04 Marks)
b. Determine the short-term deflection as per IS code due to dead load and live load and long term deflection due to shrinkage of a cantilever beam of span 5 m subjected to dead load of $15 \mathrm{kN} / \mathrm{m}$ and live load of $15 \mathrm{kN} / \mathrm{m}$ at service state. The width and overall depth of beam are 400 mm and 750 mm respectively. It is reinforced with $6-\# 25$ at top and $2-\# 25$ at bottom with a clear cover of 25 mm . Waterials used are M20 grade concrete and Fe 415 steel.
(16 Marks)
4 A T-beam and slab floor system has a slab 125 mm thick spanning between beams which are spaced at 3.5 m apart. Tife beams have a clear span of 7.5 m and end bearings are 230 mm wall. The live load on floor is $4 \mathrm{kN} / \mathrm{m}^{2}$ and floor finish is $0.8 \mathrm{kN} / \mathrm{m}^{2}$. Design the intermediate T-beam for flexure and shear. Sketch the details of reinforcement. Use M20 grade concrete and Fe-415 steel.
Note : The bearm is simply supported on walls.

PART - B

5 Design a two-way slab for a hall of size $4.2 \mathrm{~m} \times 5.2 \mathrm{~m}$. The slab is supported all around on walls of width 230 mm . The slab has to carry a live lœad of $4 \mathrm{kN} / \mathrm{m}^{2}$ and floor finish is $0.6 \mathrm{kN} / \mathrm{m}^{2}$. All the edges are discontinuous and corners are held down. Use M20 concrete and Fe415 steel. Also sketch the details of reinforcement.
(20 Marks)

6 a. Why does the code require all columns to be able to resist a minimum eccentricity of loading?
(04 Marks)
b. Enumerate the functions of the transverse reinforcement in a reinforced concrete column.
(04 Marks)
c. Design a reinforced rectangular short column of size $300 \mathrm{~mm} \times 400 \mathrm{~mm}$ which has to carry an ultimate axial load of 733 kN and an ultimate moment of $100 \mathrm{kN}-\mathrm{m}$ with respect to major axis. Use M20 concrete and Fe415 steel. Also sketch the details of reinforcement. (12 Marks)

7 Design an isolated rectangular footing of uriform depth for a column of size $300 \mathrm{~mm} \times 450 \mathrm{~mm}$ which has to carry a load of 800 kN . Safe bearing capacity of soil is $200 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe415 steel. Also show the details of reinforcement through sketches.
(20 Marks)

8 a. Explain the basic difference in structural bahaviour between "Etair slabs spanning transversely" and "Stair slabs spanning longitudinally".
(04 Marks)
b. The clear dimensions af a stair case hall is $2.6 \mathrm{~m} \times 5.2 \mathrm{~m}$. The floor to floor height is 3.6 m . Design one of the flights of dog-legged stairs considering live load as $3.0 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe 415 steel. Assume that the landings span in the same direction as the stairs and are supported on 230 mm walls at the ends. Sketch the reinforcement details. ($\mathbf{1 6}$ Marks)

USN \square
Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Structural Analysis - II

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Two point loads of 10 kN and 5 kN , spaced 3 mt apart, cross a girder of 10 mt span , as shown in Fig.Q1(a). The snraller load leading, from left to right. Calculate maximum S.F. and B.M. at a section 4 mt from left hand support.
(12 Marks)

Fig.Q1(a)
b. Two loads of an electrical crane, 50 kN each, spaced at 4 mt centre to centre cross a girder of 8 mt span as shown in Fig.Q1(b). Find the absolute maximum bending moment in the beam.
(08 Marks)

Fig.Q1(b)
2 Analyse the frame shown in Fig.Q2 using "Slope Deflectiœn method", and draw BMD and SFD.
(20 Marks)

Fig.Q2
3 Analyse the continuous beam loaded as shown in Fig.Q3 by the moment distribution method. Draw Shear Force $\{\mathrm{SF}\}$ and Bending Moment $\{\mathrm{BMD}\}$ diagrams.
(20 Marks)

Fig.Q3
1 of 3

4 Analyse the portal frame loaded as shown in Fig.Q4 by using moment distribution method and draw the BMD and SFD. Take EI is constant.
(20 Marks)

Fig.Q4

PART - B

5 Analyse the continuous beam shown in Fig.Q5 using Kani's nmethod and draw BMD.
(20 Marks)

Fig.Q5
6 A continuous beam ABC as shown in $\mathbb{F i g}$.Q6 fixed at ' A ' and roller support at ' C ' and the EI is constant throughout the beam. Determine the Reactions and Moments at the supports. Draw BMD and SFD by using Flexibility method.
(20 Marks)

Fig.Q6
7 Analyse the three wire system shown in Fig.Q7, the number in parenthesis are the c/s area of the wire in mm^{2}. Take $\mathrm{E}=2000 \mathrm{kN} / \mathrm{mm}^{2}$, using stiffness method.
(20 Marks)

Fig.Q7
8 a. Explain the following:
i) The equation of motion for damped vibrating system
ii) Critical damping
iii) Under damping
iv) Over damping
v) Damping ratio.
(10 Marks)
b. Determine the equivalent spring stiffness and natural frequency of vibration for the Fig.Q8(b) shown below.

Fig.Q8(b)

USN

Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Geotechnical Engineering - I

Time: 3 hrs.
 \title{

Note: Answer any FIVE full questions, selecting
 \title{ \section*{Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.}

 atleast TWO questions from each part.}}

Max. Marks: 100

PART - A
1 a. What is phase diagram? Define tha following with the help of three phase diagram.
i) Porosity ii) air content iii) water content iv) bulk unit weight of soil v) unit weight of soil solids vi) percentage air voids vii) degree of saturation viii) void ratio.
(06 Marks)
b. with usual notations, derive the relation :
$\gamma^{\prime}=\frac{(\mathrm{G}-1) \gamma_{\omega}}{1+\mathrm{e}}$.
(06 Marks)
c. Soil has been compacted in an embankment at a bulk density of $21.5 \mathrm{kN} / \mathrm{m}^{3}$ and water content of 12%. The value of specific gravity of soil solid is 2.65 . The water table is well below the foundation level. Estimate the dry density, void ratio, degree of saturation air content and fercentage air voids of compacted soil.
(08 Marks)
2 a. What is consistency of soil? List and define the various atterberg consistency limits.
b. What are the corrections to be made in hydromer (06 Marks) corrected hydrometer reading.
(04 Marks)
c. Draw the particle size distribution curve and determine unifoumity coefficient and coefficient of curvature af the soil for the data given below :
Also state whether the sand given is well graded or poorly graded as per I.S recommendations :

Sieve size 'mm'	4.75	2.36	1.18	0.60	0.30	0.15	0.075	Pan
Mass of soil retained 'grams'	13	72	66	517	231	92	8	1

3 a. Explain with the help of the particle size distribution curve, well graded, uniformly graded and gap graded soil.
(04 Marks)
b. With neat sketch, explain the structure and salient details of clay minerals.
(08 Marks)
c. The following data refers to a sample of soil :

Hercentage passing 4.75 mm IS sieve $=52$
Percentage passimg 0.75 mm IS sieve $\quad=7$
Uniformity cocfficient $\quad=6.8$
Coefficient of curvature $\quad=3.0$
Liquid limit of fine grained soil $=38 \%$
Plastic limit of fine grained soil $\quad=12 \%$
(08 Marks)
4 a. List and briefly explain the factors affecting the permeability of soils. ($\mathbf{0 6}$ Marks)
b. Explain quick sand phenomenon.
(06 Marks)
c. A sand sample of $35 \mathrm{~cm}^{2}$ cross-sectional area and 20 cm long was tested in a constant head permeameter. Under a head of 60 cm the discharge was 120 ml in 6 minutes. The dry unit weight of the sand used for the test was 1120 grams and $\mathrm{G}=2.68$. Determine,
i) Coeffficient of permeability in $\mathrm{cm} / \mathrm{sec}$
ii) The discharge velocity
iii) The seepage velocity.
(08 Marks)

PART - B

5 a. Explain briefly the Mohr-Coulomb theory applied to soils.
(05 Marks)
b. Explain sensitivity and thixotropy of clay.
(05 Marks)
c. A direct shear test was conducted on a remoulded soil sample of sand gave the following observations at the time of failure. Normal load, $\sigma=288 \mathrm{~N}$. Shean load $=173 \mathrm{~N}$. The crosssectional area of the sample $=36 \mathrm{~cm}^{2}$. Determine,
i) The angle of internal friction
ii) The magnitude and directicn of the principal stresses in the zone of failure, by using graphical method.
(10 Marks)
6 a. List the differences between standard and modified proctors compaction test.
(04 Marks)
b. Explain the factors affecting the compaction of sails.
(04 Marks)
c. The following are the results of compaction test :

Mass of mould + wet soil (grams)	2925	3095	3150	3125	3070
Water content \%	10	12	14.3	16.1	18.2

Volume of the mould $\quad=1000 \mathrm{ml}$
Mass of the mould $\quad=1000$ grams
Specific gravity of solids $=2.70$
i) Plot the compaction curve and find the optimuir moisture content and maximum dry density
ii) Pbt the zero air void line
iii) Determine the degnee of saturation at the maximum dry density.

7 a. What are the assumptions made in Terzaghi's one dimensiomal consolidation theory?
(08 Marks)
b. Explain the determination of pre-consolidation pressure by casagrande method. (06 Marks)
c. An undisturbed sample of a clay stratum 2 m thick, was tested in the laboratory and the average value of coefficient af consolidation was found to be $2 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}$. If a structure is built on the clay stratum, how long will it take to attain half the ultimate settlement under the load of the structure? Assume double draimage.
(06 Marks)
8 a. What are the curve fitting methods used in consolidation test? Explain logarithmic time curve fitting method with neat sketch.
(08 Marks)
b. What are the advantages of triaxial shear test over direct shear test?
(04 Marks)
c. A vane 10 cm long and 8 cm in diameter was pressed into soft clay at the bottom of a borehole. Torque was applied and gradually increased to $45 \mathrm{~N}-\mathrm{m}$ when failure took place. Subsequently, the vane rotated rapidly so as to completely remould the soil and a torque of $18 \mathrm{~N}-\mathrm{m}$ is required to shear this soil. Calculate cohesion of clay in natural and remoulded state. Also find sensitivity and mention the type and structure of clay based on this sensitivity.
(08 Marks)

Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Hydrology and Irrigation Engineering

Time: 3 hrs.
Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.
2. Draw neat sketches, wherever necessary.
3. Assume missing data, if any.

PART - A
1
a. Define Precipitation. What is Cyclonic precipitation? Distinguish between cold front and warm front. Explain how you would estimate missing precipitation data in detail. (10 Marks)
b. There are four rain gauge stations existing in the catchment of a river The average annual rainfall values at these stations are $800,620,400$ and 540 mm respectively.
i) Determine the optimum number of raingauges in the catchment, if it is desired to limit the error in the mean value of rainfall in the catchment to 10%.
ii) How many more gauges will then be required to be installed?
(10 Marks)

3 a. Mention the basic assumptions in the theory of unit hydrograph. Explain step by step method of construction of unit hydrograph from a storm of unit duration. Mention the sources of error in unit hydrograph construction.
(10 Marks)
b. A reservoir with a surface area of 300 hectares has the following average meteorological data during a given week.
Water temperature $=30^{\circ} \mathrm{C}$; Relative humidity $=50 \%$; Wind velocity @ 1 m above ground $=12 \mathrm{~km} / \mathrm{h}$; Mean barometer reading $=750 \mathrm{~mm}$ of Hg . Estimate the average daily evaporation from the lake reservoir and the volume of water evaporated from the lake during this week. Make use of Meyer's formula and Rohwer's formula to compare the results. Assume $\mathrm{e}_{\mathrm{s}}=31.82 \mathrm{~mm}$ of $\mathrm{Hg}, \mathrm{K}_{\mathrm{m}}=0.36$.
(10 Marks)
a. Draw a neat sketch of an automatic recording rain gauge and describe its working. What precautions are to be taken in the installation of the gauge and recording of the rainfall measurements?
(10 Marks)
b. Explain the double mass curve method of testing the consistency of rainfall record.
(05 Marks)
c. The analysis of a storm yielded the following information regarding Isohyets. Calculate the average depth of rain fall and volume of rain water for given catchment.
(05 Marks)

Isohyet Interval in mm	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$	$120-130$
Area in km^{2}	10	85	113	98	136	67

Describe step by step procedure adopted for flood routing computations required for reservoirs by 'Trial and Error method'.
(10 Marks)
b. Describe a double ring infiltrometer for measuring infiltration rate. What is the significance of the outer ring?
(05 Marks)
c. The average rainfall over a basin of area 107 hectare during a storm was as follows :

Time (hr)	0	1	2	3	4	5	6	7
Rainfall (mm)	0	9	15	24	32	29	19	0

If the volume of run - off from this storm was measured as $50 \times 10^{3} \mathrm{~m}^{3}$. Determine the ϕ Index.
(05 Marks)

PART - B

5 a. Discuss briefly on "ill - effects of irrigation" on environment.
(05 Marks)
b. With a flow diagram, discuss briefly about different systems of irrigation.
(10 Marks)
c. Compare the advantages and disadvantages of well irrigation.
(05 Marks)
6 a. Discuss briefly about soil classification.
(10 Marks)
b. Describe the factors which affect the duty of water.

7 a. What is meant by "Irrigation efficiencies"? Obtain expressions for various Irrigation efficiencies.
(10 Marks)
b. A water course has a cultivable commanded area of 1200 ha. The intensity of irrigation for crop A is 40% and for B is 35%, both the crops being Rabi crops. Crop A has a Kor period of 20 days and crop B has Kor period of 15 days. Calculate the discharge of the water course, if the Kor depth for crop A is 10 cm and for B it is 16 cm .

8 a. Explain various types of canals, according to various classification systems.
(10 Marks)
b. Design an irrigation channel in alluvial soil according to Lacey's Silt theory, given the following data :
Full supply discharge $=15 \mathrm{~m}^{3} / \mathrm{sec}$.
Lacey's silt factor $=1.0$.
Channel side slopes $=1 / 2: 1$.
(10 Marks)

Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Transportation Engineering - I
Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, selecting
at least TWO questions from each part.

PART - A

1 a. Explain various characteristics of road transport.
(06 Marks)
b. Explain briefly the contribution of the following in road development in India:
i) Indian road congress
ii) Central road fund
(08 Marks)
c. The area of a state is $3,08,000 \mathrm{sq} . \mathrm{km}$. The number of towns as per 1981 census was 276 . The number of villages was 41,833 . Calculate the length of various categories of roads as per $3^{\text {rd }}$ 20 year road development play.
(06 Marks)
2 a. Define "Master plan" and "Saturation system". Explain the following with neat sketches:
i) Rectangular or block pattern
ii) Star and grid pattern
(08 Marks)
b. List the salient features of PMGSY.
(04 Marks)
c. There are three alternate proposals for a back word district shown below, suggest the order of priority for phasing based on the utility units of $0.5,1,2,4$ and 8 for the five population ranges and 1 and 5 per 1000t of agricultural and industrial products.

Road Link	ength km	No. of Villages Served with Population range		Productivity served in 1000 tonnes		
		$501-1000$	$1001-2000$	Agricultural	Industrial	
A	500	100	150	40	250	20
B	600	200	250	68	320	25
C	700	270	350	82	500	35

(08 Marks)
3 a. What is an ideal alignment? Explain with neat sketches how you will align through
(i) Hill pass
(ii) A bridge site
(iii) Marshy land.
(08 Marks)
b. Describe the terms: Carriage way and right of way. Give typical cross section of NH/SH in rural section, in embankment and in cutting, with dimensions.
(06 Marks)
c. What is SSD? Calculate the minimum SSD required to avoid a head on collision, when two cars are approaching from opposite directions on 2.5% gradient stretch, with speeds of 90 kmph and 70 kmph . Assume reaction time as 2.5 sec and coefficient of friction as 0.35 .
(06 Marks)
4 a. Explain the factors influencing the geometric elements.
(06 Marks)
b. List the object providing extra widening of pavement at horizontal curves and super elevation.
(06 Marks)
c. Design a valley curve at the junction of downward gradient of 1 in 30 and a level stretch from head light sight distance considerations. SSD is 180 m . Treating the curve as a square parabola, calculate the RLS at an interval of 25 m to set out the curve. RL of starting point at level stretch is 10.00 m .
(08 Marks)
a. List the desirable properties of bitumen. What are the various tests carries out on bitumen?
(07 Marks)
b. Describe how the quality of toughness and hardness of aggregates is evaluated in the lab.
(06 Marks)
c. The following test data pertains to a soil subgrade specimen.

Penetration (mm)	0	0.5	1.0	1.50	2.0	2.5	3.0	4.0	5.0	7.5	10.00	12.50
Load (kg)	0	5	16.2	28.1	40	48.5	56.5	67.5	75.2	89.0	99.5	106.5

Plot the data and determine the CBR value.
(07 Marks)
6 a. Distinguish between flexible pavement and rigid pavement.
(06 Marks)
b. Explain the meaning of ESWL. How is it determined for a dual wheel assembly and what are its applications?
(06 Marks)
c. Design the flexible pavement for the construction of a new highway (NH/two lane/single carriage way) with the following data, as per IRC 37-2001.
i) Number of commercial vehicles as per last count 1000 CVPD.
ii) Period of construction $=3$ yrs, annual growth rate $=08 \%$. Design CBR of sub of sub-grade soil 6%.

(08 Marks)
7 a. Explain the construction steps for cement concrete roads.
(06 Marks)
b. Indicate the different methods of subsurface drainage, with neat sketches.
(08 Marks)
c. What do you understand by wet mix macadam? What are materials used and its requirements?
(06 Marks)
8 a. Write short notes on: (i) Annual cost method (ii) Benefit cost ratio method
b. Explain the concept of BOT and BOOT, in financing high way project.
c. Explain the following with neat sketches:(i) Alligator cracking (ii) Mud pumping. (08 Marks)

